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Abstract

We present a numerically precise treatment of the Crank–Nicolson method with an imaginary time evolution operator
in order to solve the Schrödinger equation. The time evolution technique is applied to the inverse-iteration method that
provides a systematic way to calculate not only eigenvalues of the ground-state but also of the excited-states. This method
systematically produces eigenvalues with the accuracy of eleven digits when the Cornell potential is used. An absolute error
estimation technique is implemented based on a power counting rule. This method is examined on exactly solvable prob-
lems and produces the numerical accuracy down to 10�11.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical computation of analytically unsolvable Schrödinger equations has been of interest in atomic and
molecular physics, quantum chromodynamics, Bose–Einstein condensation of trapped atomic vapors, and
plasma physics [1–6]. Conventionally, a wave function has been represented as a linear combination of plane
waves or of atomic orbitals [7]. However, these representations entail high computational cost to calculate the
matrix elements for these bases. Also, the plane wave bases set is not suitable for localized orbitals and the
atomic orbital bases set is not suitable for spreading waves. In particular, the potential problems such as
the Cornell potential [8,9] are difficult to solve in order to obtain precise eigenvalues because they have singu-
larities at 0 and at1. Also, the potential includes non-perturbative regime when the linear term is significant.

To overcome these problems, numerical methods such as the Landé subtraction [10] and the Nystrom plus
correction [11] in the momentum space have produced eigenvalues with six or seven meaningful digits. Other
methods have adopted real-space representation [12,13]. In this method, a wave function is discretized by grid
points in real-space providing from five to seven digits. Also, estimates using the exact solutions of the
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Killingbeck potential, have produced eigenvalues with seven digits [3]. Among these real-space methods, a
method called the Crank–Nicolson (C–N) scheme [14–16] is known to be especially useful for one-dimensional
systems because this method conserves the norm of the wave function exactly. Also, the computation is known
to be stable and accurate even with a long time slice. These characteristics are very attractive for solving the
Cornell potential problem. On the other hand, the current numerical precisions in solutions of the Cornell
potential problem may not be as high as we would hope to achieve. For example, this lack of precision
may forbid us to study fine or hyper-fine structure effects in the atomic system [10]. The calculation of matrix
elements subject to large subtractions may require high accuracy in quantum chromodynamics [17]. Also,
none of the references we compiled for this study contains a serious error estimate for their numerical calcu-
lations, when such error estimate is an important indicator of the reliability of a suggested numerical method.
These two issues motivated us to solve the Cornell potential problem more precisely with a rigorous error
estimate.

In this paper, we discuss our application of the C–N method to solve the Schrödinger equation with the
Cornell potential. The radial part of the Schrödinger equation with the Cornell potential is given by
� d2

dq2
þ ‘ð‘þ 1Þ

q2
� k

q
þ q

� �
uðqÞ ¼ fuðqÞ; ð1Þ
where the dimensionless wave function uðqÞ, the orbital angular momentum quantum number ‘, and the
dimensionless energy eigenvalue f in Eq. (1) are described in Ref. [8]. The parameter k is the relative strength
between the Coulomb and the linear potentials, and we call it the Coulombic parameter throughout this paper.
We present two different numerical methods in solving Eq. (1). First, the C–N method with the imaginary time
evolution operator is re-interpreted by extending its allowed region. This may have used in practice earlier, but
we explicitly describe it here to clarify our technique. This method produces ground-state eigenvalues with
numerical accuracies of eleven digits when the Cornell potential is used. We then apply the original C–N time
evolution technique to the inverse-iteration method [18]. This technique provides a systematic way to calculate
not only the eigenvalue of the ground-state but also those of excited-states with less computational time by a
factor of 10, while providing the same accuracy as in our re-interpreted C–N method. At the end of this paper,
we discuss a mathematically simple but rigorous absolute error estimation for the numerical calculations.

2. The relaxed Crank–Nicolson method

The C–N method [14–16] is a finite difference method used for solving diffusive initial-value problems
numerically. The main part of this method is the time evolution operation and the evolution operator for
the Schrödinger equation may be approximated by the Cayley’s form [7] as
e�iHt ¼
1� i

2
Ht

1þ i
2
Ht
þOðH3t3Þ; ð2Þ
where H is the Hamiltonian of the problem to be solved. This equality is correct up to the second order in Ht
and the approximation is valid when jHtj � 1. By applying this operator to an initial wave function, the time-
evolved wave function can be obtained. The standard C–N method makes use of Eq. (2) in order to study the
time evolution of the wave function [14,15].

As a next step, we introduce the imaginary time method [4] to calculate the eigenfunctions and eigenvalues.
By the Wick rotation, t is replaced by �is in the time evolution operator [4]. This transforms the original
Schrödinger equation into a diffusion equation. Then the wave function evolves in time slice Dt as
uðq;DtÞ ¼
X1
i¼1

CiuiðqÞe�ifiDt ¼
X1
i¼1

CiuiðqÞe�fiDs; ð3Þ
where uiðqÞ and fi are the eigenfunction and the eigenvalue for the ith state, respectively. Ci is the relative
amplitude for the ith state. The summation is over all possible eigenstates of the system.

For the imaginary time version, the eigenfunctions decay monotonically in time until the steady-state is
reached. Here, rescaling of the wave function is required during the time evolution in order to preserve the



Table 1
Dependence of the ground-state eigenvalues f on the Coulombic parameter k

k f (Ref. [8]) f (this work) Df

0.0 2.338107 2.338107410458750 1:0� 10�12

0.2 2.167316 2.167316208771731 1:0� 10�12

0.4 1.988504 1.988503899749943 9:6� 10�13

0.6 1.801074 1.801073805646145 8:5� 10�13

0.8 1.604410 1.604408543235973 6:6� 10�13

1.0 1.397877 1.397875641659578 3:8� 10�13

1.2 1.180836 1.180833939744863 2:1� 10�14

1.4 0.952644 0.952640495219193 5:8� 10�13

1.6 0.712662 0.712657680462421 1:3� 10�12

1.8 0.460266 0.460260113875977 2:3� 10�12

The Cornell potential is used in the calculation. The second column contains the numerical results from Ref. [8] and the third column
contains our result with the relaxed C–N method. The number of grid points is set to be N = 300,000 and Ds ¼ �5 for the numerical
analysis. An estimate on the numerical errors of the computation Df is also listed at the last column and will be discussed later.
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norm to be unity. The ground-state eigenvalue can then be read off from the steady-state eigenfunction as
s!1 [4]. Therefore, the time evolution operation itself in the C–N method acts as a tool that selects the
ground-state exclusively, and the condition jHsj � 1 is not absolutely necessary in the calculation of the
ground-state eigenvalue. When all the eigenvalues are negative such as in the pure Coulomb potential, where
f0 < � � � < fn < � � � < 0, the amplification of the ground-state coefficient may happen in the region
�2 < Hs < 0 as the time evolution continues. On the other hand, when all the eigenvalues are positive such
as in problems with the linear and Cornell potentials, where 0 < f0 < � � � < fn, the time evolution operator can
amplify the ground-state coefficient in the region Hs < �2. Again, the condition jHsj � 1 is not absolutely
necessary and such a condition may be relaxed in order to obtain faster convergence to the ground-state eigen-
function. This relaxation of the convergence condition has been used in practice and we call this approach the
relaxed C–N method throughout the paper.

Once the ground-state wave function is obtained, we can obtain the ground-state eigenvalue from the
expectation value of the Hamiltonian of interest. Note that, for the numerical computation of an expectation
value, the upper bound of the integral can not be infinity but rather a cut-off value, qmax. We will explain how
to control the numerical error produced by ignoring the region ðqmax;1Þ later.

We applied the relaxed C–N method to the Cornell potential problem. We chose a Gaussian function as an
initial wave packet. We did this because it contained contributions from the eigenstates that were being sought
[8,9]. The k dependence of the ground-state eigenvalues in Ref. [8] was reproduced with our relaxed C–N method
and a comparison of the two results is summarized in Table 1. We also did a rigorous error analysis for our study
and the results are included in the table. The error analysis will be explained in the later section. The time evo-
lution in our relaxed C–N method gives eigenvalues over iterations down to stable 16-digits. All agree reason-
ably well with the results in Ref. [8]. For higher values of k, the agreements become worse but we argue that our
numbers are more precise as the error estimation of the numerical calculations are given in our computation. We
also found that the convergence speed was improved by 10 times when it was compared with the standard C–N
method that we tested. For excited-states, we can, in principle, obtain the eigenvalues from the lowest to higher-
states by the Gram–Schmidt orthogonalization procedure. We found that the standard C–N method was not
useful in calculating excited-states because the convergence speed was practically zero when we required the
numerical precision to be 10 digits. However, with the relaxed C–N method, the excited-state eigenvalues were
successfully found, with the speed being 10 times slower than the time needed to find the ground-state. The
amount of time required to calculate excited-states was no longer than 10 min with a Pentium IV CPU.

3. The inverse-iteration method

In this section, we use the inverse-iteration method [18] in order to calculate the excited-state eigenvalues
and eigenfunctions systematically and more efficiently. Let us consider the following inverted operator:
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Numer

State

1S
2S
3S
4S
5S
1P
2P
3P
1D
2D
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later.
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1

H� b
; ð4Þ
where b is an arbitrary real number in the eigenvalue space. We apply the operator in Eq. (4) to the wave
packet k times,
1

H� b

� �k

uðqÞ ¼
X1
i¼1

Ci

ðfi � bÞk
uiðqÞ; ð5Þ
where we assume that the time independent wave packet uðqÞ can be expressed as a linear combination of the
eigenfunctions uiðqÞ with coefficients Ci. This is closely related to the well-known power iteration scheme [18].
The b has to be chosen in such a way that the inverse operator ðH� bÞ�1 can amplify the desired eigenstate
selectively. Namely, for b ¼ fi þ � such that j�j � 1, we have
1

fi � b

����
����� 1

fj � b

����
����; ð6Þ
when j 6¼ i. Therefore, Eq. (4) plays a role as an amplifier that magnifies contributions from the term with the
nearest eigenvalue from the point b. In this way, all the eigenvalues within an arbitrary range in b can be found
systematically, by running b within the range. We call this approach as an inverse-iteration C–N method in this
paper. Advantages of this method are as follows. First, the calculations of excited-states can be carried out
systematically by stepping through different values of b. Second, the computing time for calculating ex-
cited-state wave functions is similar to the time needed for the calculation of the ground-state wave function.
Furthermore, it does not lose accuracy in the calculation of higher-state eigenvalues while other methods do
often. This contrasts the inverse-iteration C–N method to the relaxed C–N method. With the relaxed C–N
method, the Gram–Schumidt orthonormalization slowed down the computing speed by 10 times, as men-
tioned before, and it limited the applicability of the method for excited-states. On the other hand, one may
argue that with the inverse-iteration C–N method, the convergence for a given excited-state may not be guar-
anteed without any prior knowledge of the spectrum. That is, if the spectral properties are not known, this
approach may not be useful. We found that in practice, all eigenstates within the range of interest for known
problems such as the Coulomb and the linear potential problems were easily found by running b. The second
weakness of this method is that it cannot be used for finding orthonormalized wave functions that belong to a
degenerate set.

First, we tested the inverse-iteration C–N method on the pure Coulomb potential and to the pure linear
potential (k ¼ 0) where the exact eigenvalues were known for both cases. This is a good benchmark because
we can directly examine the performance of the algorithm by comparing the exact solutions to the numerical
results of the algorithm to be tested. We found that the numerical values of eigenvalues agreed well with
known analytic values, up to eleven digits. Second, we applied the inverse-iteration C–N method to the
2
ical values of eigenvalues and the error estimation for various excited-states with the Cornell potential

f (this work) Df

1.397875641659581 3:8� 10�13

3.475086545392783 3:4� 10�12

5.032914359529781 6:3� 10�12

6.370149125476954 9:4� 10�12

7.574932640578566 1:3� 10�11

2.825646640702388 1:2� 10�12

4.461863593453813 3:1� 10�12

5.847634227299904 5:5� 10�12

3.850580006802002 5:9� 10�13

5.292984139 140243 2:0� 10�12

verse-iteration C–N method is used to calculate eigenvalues. The Coulombic parameter is set to k ¼ 1:0 and the number of grid
to be N = 300,000. An estimate on the numerical errors of the computation Df is also listed at the last column and will be discussed
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Cornell potential and reproduced the result in Table 1. We found that eleven digits of the eigenvalues were
reproduced completely from k ¼ 0:0 to 1.8. This is consistent with our error estimation that is to be explained
later. Third, we applied the inverse-iteration C–N method to the calculation of the excited-states. Table 2
shows the eigenvalues we obtained. Note that for the 1S state in Table 2, we can compare the eigenvalue with
the corresponding number in Table 1. Only the last two digits are different, which is again consistent with our
error estimation. For the ground-state, the relaxed and the inverse-iteration C–N methods required similar
amount of computing time, but for the excited-states, the inverse-iteration C–N method was faster by 10
times. We checked the computing speed for the Coulomb, linear, and Cornell potentials separately and all
three gave similar performance.

4. Error estimation

There are two major sources of errors in our numerical calculation. One is the cut-off (qmax) and the other is
the discretization of continuous equations. The cut-off gives an imperfect numerical integration but could in
principle be reduced as small as possible by increasing the value of qmax. We estimated the error due to the
finite value of qmax for the Coulomb and linear potentials, respectively, by integrating the exact eigenfunctions.
We found that the errors were 10�15 or smaller when qmax ¼ 20, for example. In fact, for the practical purpose,
we controlled the value of qmax in such a way that the numerical error due to the finite value of qmax was smal-
ler than the error from the discretization of continuous equations. Certainly, this assumes that the error esti-
mates with the Coulomb and linear potentials individually are not significantly different from the errors due to
the Cornell potential. Practically, selecting proper values of qmax is important, because values that are too
small cause large errors and too large values may slow down the computation. We found that qmax ¼ 30
was an optimal value for most of our applications discussed in this paper. Note that qmax ¼ 30 corresponds
to 30 times of the Bohr radius in the hydrogen atom problem, for example.

A more serious source of the error is originated from the discretization of continuous differential equations.
In this paper, the differentiation and integration of wave functions are discretized with the following prescrip-
tions [14]
u00j ¼
ujþ1 � 2uj þ uj�1

Dq2
þOðDq2Þ; ð7Þ

Z
dquðqÞ ¼ Dq

2

XN

j¼1

ðujþ1 þ ujÞ þOðDq2Þ; ð8Þ
where Dq is the distance between two nearest discrete points in the calculation. From both Eqs. (7) and (8),
numerical errors contained in the discretization are proportional to Dq2 ¼ N�2 where N is the number of grid
points in the discretization. Therefore, the error in the calculation of eigenvalues due to the discretization may
be approximated as
DfðNÞ � cN�2; ð9Þ

where DfðNÞ ¼ jfexact � fðNÞj and the constant c depends on the potential. If we select two arbitrary values in
grid points, N 1 and N 2, for example, then we can easily obtain the constant c as
c � DfðN 1Þ � DfðN 2Þ
N�2

1 � N�2
2

����
���� ¼ fðN 1Þ � fðN 2Þ

N�2
1 � N�2

2

����
����: ð10Þ
With the help of Eq. (10), we can estimate the error due to the discretization described in Eqs. (7) and (8). We
refer to it as an error estimation from the power counting rule. In Fig. 1, our estimate of the numerical error
DfðNÞ is compared with the true error, jfexact � fðNÞj for the Coulomb and the linear potentials. Here we used
results of our inverse-iteration C–N method for the error analysis. It is apparent from Fig. 1 that our error
estimate is accurate down to 10�11 for the 1S state under the Coulomb potential, for example, when
N = 300,000. For others, the results are better than that of the 1S state as shown in Fig. 1. For the 1D state
under the Coulomb potential, the true error looks unstable at a large value of N. This is due to the limitation
in storing significant digits during our computation of fðNÞ, which means it reaches a limit because of the



Fig. 1. The numerical error estimation for the eigenvalues as a function of the number of grid points. For the Coulomb (linear) potential,
jfexact � fðNÞj is indicated with open boxes (triangles) for 1S, 1P and 1D states (the 1S state only for the linear potential). The error
estimates based on Eq. (9) for the Coulomb, linear and Cornell potentials are shown in straight, dashed and dot-dashed lines, respectively.
Note that both axes are in logarithmic scales.
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floating point precision of double size real variables that we used in the computation. Note that for the Cornell
potential, the true errors cannot be calculated because the exact solutions are unknown. For the Cornell po-
tential, we estimated that the errors were in the range of 10�12 as in Fig. 1. We used this error estimation tech-
nique throughout the work described in this paper. Numerical values of the error estimates are included in
Tables 1 and 2.

In addition to the spatial contribution to the error described above, the finite time evolution may also con-
tribute. However, in our study, the time evolution is always kept until the fluctuation of the eigenvalue is much
smaller than our target precision defined by Eq. (9). Therefore, little contribution due to the finite evolution
exists in our error estimation.

5. Conclusions

We have presented two numerical approaches for calculating the Schrödinger equation with the Crank–
Nicolson method. In the relaxed C–N method, the time evolution operator was re-interpreted as a weighting
operator for finding the ground-state eigenfunction more precisely. Second, the inverse-iteration method was
applied to the C–N method that was more efficient in computing not only the ground-state but also the
excited-state wave functions systematically. At the end, an absolute error estimation method was developed
based on a power counting rule that was consistent with absolute error values when exact solutions are known.
These two algorithms may be useful when precise numerical results are required. Possible applications may
include Cornell potential [8,9] and Bose-Einstein condensation of trapped atomic vapors [4].
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